ar X iv : m at h / 02 01 07 7 v 3 [ m at h . G N ] 1 6 Ja n 20 03 A family of pseudo metrics on B 3 and its application

نویسندگان

  • Yoonsuh Kim
  • Young Deuk Kim
چکیده

We define a family of pseudo metrics on B and study elementary properties of the associated metric spaces. As an application we prove that, for any a > 0 and for any countable-to-one function f from (S, dE) to [0, a], the set NMnf = {x ∈ S 2 | ∃y ∈ S such that f(x)− f(y) > ndE(x, y)} is uncountable for all n ∈ N, where dE is the standard Euclidean metric on S = { (x, y, z) ∈ R | x + y + z = 1 }

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 01 07 7 v 5 [ m at h . G N ] 1 5 Fe b 20 07 A family of pseudo metrics on B 3 and its application

Let B be the closed unit ball in R and S its boundary. We define a family of pseudo metrics on B. As an application, we prove that for any countable-to-one function f : S → [0, a], the set NMnf = {x ∈ S 2 | there exists y ∈ S2 such that f(x)−f(y) > ndE(x, y)} is uncountable for all n ∈ N, where dE is the Euclidean metric on R . 2000 Mathematics Subject Classification ; 57N05, 57M40 1 The family...

متن کامل

ar X iv : h ep - t h / 02 01 09 7 v 1 1 5 Ja n 20 02 LORENTZ VIOLATION AT ONE LOOP

The proof of one-loop renormalizability of the general Lorentz-and CPT-violating extension of quantum electrodynamics is described. Application of the renormalization-group method is discussed and implications for theory and experiment are considered.

متن کامل

ar X iv : m at h / 02 01 15 9 v 1 [ m at h . D G ] 1 7 Ja n 20 02 Reduction of HKT - Structures

KT-geometry is the geometry of a Hermitian connection whose torsion is a 3-form. HKT-geometry is the geometry of a hyper-Hermitian connection whose torsion is a 3-form. We identify non-trivial conditions for a reduction theory for these types of geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008